技巧
https://github.com/rwightman/pytorch-image-models
https://github.com/kuangliu/pytorch-cifar
数据
https://zhuanlan.zhihu.com/p/402511359
数据增量: https://github.com/conradry/copy-paste-aug
目标检测增强: 正样本增强:根据类别增强、根据大小增强、增强中加入随机概率、无合适anchor的增强、根据匹配好坏的增强
训练
首先在小backbone如resnet34/efficientnetb0起步,调节loss/augmentation/metric/lr_scheduler
然后再换大模型
分类
检测
mmdetection: https://zhuanlan.zhihu.com/p/337375549
EDA:分析图片尺寸信息,标签数量、大小信息(根据数据信息决定:anchor,训练尺度, 感受野) https://github.com/Media-Smart/volkscv/tree/master/volkscv/analyzer/statistics
模型:yolov5,efficientdet,mmdetection(cascade rcnn)
调参:模型,后处理
优化:persudo label,TTA,nms,weighted fusion box
https://github.com/felixBrave/ocr_chinese
https://github.com/FudanVI/benchmarking-chinese-text-recognition
EDA
图像大小分布
gt-box 大小,长宽比分布
gt-box与图像大小比例分布
特殊性质
后处理
https://www.kaggle.com/shonenkov/wbf-approach-for-ensemble
入门
https://www.kaggle.com/code/phalanx/train-swin-t-pytorch-lightning
https://zhuanlan.zhihu.com/p/266864780 https://www.zybuluo.com/huanghaian/note/1743266 https://github.com/LiChenyang-Github/tianchi_Cervical_Cancer_top4 https://www.kaggle.com/code/youhanlee/unet-resnetblock-hypercolumn-deep-supervision-fold
实践
https://zhuanlan.zhihu.com/p/409157142
https://zhuanlan.zhihu.com/p/363354912
https://kulbear.github.io/archives/protein/
https://github.com/yl305237731/flexible-yolov5
https://github.com/bubbliiiing/yolov5-tf2
MM: https://zhuanlan.zhihu.com/p/337375549?utm_source=zhihu&utm_medium=social&utm_oi=896443966524891136
https://towardsdatascience.com/indian-car-license-plate-detection-using-yolo-v5-ae2574578175
https://github.com/facebookresearch/pytorchvideo
Last updated