技巧

在推荐数据越来越大的今天,一方面需要有好的硬件支撑,一方面是好的工具实现。2023年初这段时间,polars在赛圈越来越火就是一个例子。

模型方向

  • 树: count feature(是否使用test的leak信息), embedding feature, target encoding

  • NN: 交叉特征,序列信息

召回

  • itemCF经典操作参考:江离cikm 2019

  • 规则:同类别,最HOT,近期兴趣

  • word2vec

  • FAISS

  • YouTube-DNN

排序

优化

  • 冷启动问题

  • 行为序列建模

  • 图关系

特征

  • 降维查看user item embedding的区分度

参考与阅读

Overall

  • 召回:https://zhuanlan.zhihu.com/p/353436475

  • 排序:https://zhuanlan.zhihu.com/p/550513066

  • https://github.com/wzhe06/SparrowRecSys

  • https://github.com/microsoft/recommenders

  • https://github.com/mJackie/RecSys

  • https://zhuanlan.zhihu.com/p/351190043

  • https://github.com/xingzhexiaozhu/MovieRecommendation

  • https://github.com/ZiyaoGeng/Recommender-System-with-TF2.0

  • CTR: https://zhuanlan.zhihu.com/p/104307718

  • https://zhuanlan.zhihu.com/p/109933924

  • https://github.com/DeepGraphLearning/RecommenderSystems

  • https://github.com/zhaozhiyong19890102/Recommender-System

  • https://github.com/jihoo-kim/awesome-RecSys

  • https://github.com/datawhalechina/fun-rec

  • KDD https://github.com/aister2020?tab=repositories

  • https://github.com/DeepGraphLearning/RecommenderSystems

  • https://github.com/wangshusen/RecommenderSystem

  • https://github.com/ChuanyuXue/Recommender-Systems-Competition-TopSolutions

  • https://zhuanlan.zhihu.com/p/351190043

  • https://github.com/oreilly-japan/RecommenderSystems

FM: 解决数据稀疏的情况下,特征怎样组合的问题

  • https://www.cnblogs.com/Allen-rg/p/10750393.html

  • http://d2l.ai/chapter_recommender-systems/fm.html

  • https://www.zhihu.com/question/362190044/answer/1670206355

  • 工程化trick:https://zhuanlan.zhihu.com/p/341452558

  • https://github.com/jfpuget/LibFM_in_Keras/blob/master/keras_blog.ipynb

  • https://zhuanlan.zhihu.com/p/58160982

  • https://zhuanlan.zhihu.com/p/145436595

FFM:

  • https://zhuanlan.zhihu.com/p/347014236

  • https://zhuanlan.zhihu.com/p/328481154

  • https://github.com/nzc/tencent-contest

SINE:

  • https://github.com/lambdaji/tf_repos

  • 微信看一看: http://blog.itpub.net/31559354/viewspace-2704029/

  • https://www.zhihu.com/question/451498156/answer/1802577845

粗排:

  • https://zhuanlan.zhihu.com/p/355828527

入门:

  • https://tianchi.aliyun.com/competition/entrance/531842/forum

  • https://zhuanlan.zhihu.com/p/353436475

  • https://bjt.name/2018/07/03/bpr.html

  • https://github.com/ikaruga0508/tianchi_news_pub

  • https://github.com/LogicJake/tuling-video-click-top3

  • https://github.com/miziha-zp/BiuG-XMRec-WSDMCup22

https://github.com/opdai/wsdm2022-xmrec-top1-solution

https://github.com/gaolinjie/awesome-recommender-systems

https://github.com/tensorflow/ranking https://github.com/hongleizhang/RSPapers

https://github.com/rn5l/rsc19

https://zhuanlan.zhihu.com/p/139256086

  • https://zhuanlan.zhihu.com/p/353436475

  • https://zhuanlan.zhihu.com/p/35046241

  • https://github.com/ChuanyuXue/Recommender-Systems-Competition-TopSolutions

  • https://github.com/CharlesPikachu/algorithm/tree/master/python/SortingAlgorithm

  • https://neptune.ai/blog/tabular-data-binary-classification-tips-and-tricks-from-5-kaggle-competitions

Last updated